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al. that was trained on both low and high peaks of ChIP-
seq data (23)] and testing sets (Figure 5a), which indicates
that optimal performances require recognition of precise
regulatory motifs. We also investigated the cell-specificity of
PAnDA predictions by shuffling expression levels of DNA-
binding proteins (10 random models). In this test, elements
of PPI networks have been removed or added consider-
ing randomized expression levels with respect to thresholds
identified in the training phase. Also in this case, we ob-
served poor performances on both training (average accu-
racy = 0.52 with maximum of 0.59 on the motif dataset by
Wang et al. 2012) and testing sets (Figure 5b), indicating
that our absolute criterion based on quantile normalization
is key to identify factors and mediated cofactors participat-
ing in specific cell lines (‘Materials and Methods’ section:
Expression levels).

Stability of PAnDA models

In an additional analysis, we modified PPI networks and
DNA sequences to evaluate their impact on PAnDA pre-
dictions. In this test, we used the UniPROBE dataset as it
shows the highest performances in the testing phase (AU-
ROC of 0.89). Elimination of one cofactor per TF network
significantly reduced performances (AUROC of 0.67; P-
value = 0.0006, Student’s t-test; ‘Materials and Methods’
section: Models stability), while removal of mediated co-
factors showed less dramatic effects (AUROC of 0.82 upon
elimination of one mediated cofactor; P-value = 0.01; Fig-
ure 6a). Thus, our findings suggest that cofactors play a
predominant role in TF binding (see also Supplementary
Figure S5), in agreement with previous reports (41). Sim-
ilarly, modifications of DNA sequences dramatically af-
fected PAnDA predictive power (Figure 6b). We found that

Figure 5. Specificity of PAnDA models. (a) Randomization of regulatory
motifs. We built 10 independent models using shuffled associations be-
tween regulatory motifs and DNA-binding proteins present in the follow-
ing databases: SeAMotE (24), Jolma (14), JASPAR CORE (13), Wang (23)
and UniPROBE (15). Compared to PAnDA performances (red bars), the
random models (gray bars) show negligible predictive power (AUROCs ∼
0.50) on the test set, indicating that regulatory motifs are specific for DNA
targets. We note that the regulatory motifs generated with the SeAMotE
approach (24) are of smaller size [6 nucleic acids on average] than those
present in Jolma (14) [12 nucleic acids], JASPAR CORE (13) [12 nucleic
acids], Wang (23) [16 nucleic acids] and UniPROBE (15) [16 nucleic acids],
which results in poorer performances. (b) Randomization of expression lev-
els. For each PPI network, selection of cofactors and mediated cofactors is
based on cell-line abundances. Shuffling the expression levels of all DNA-
binding proteins, we built 10 models (gray bars) with randomized PPI net-
works. On the test set, the models have poorer predictive power (AUROCs
∼ 0.50) than PAnDA (red bars), which suggests that components of PPI
network are highly specific for the cell line of interest. In both plots, AU-
ROC averages and standard deviations are shown.

Figure 6. Stability of PAnDA models. (a) Interaction network destabiliza-
tion. We found a significant decrease in predictive performance (AUROC;
averages and standard deviations shown) upon removal of cofactors and
mediated cofactors (model 4; Online Methods: Models stability). (b) Muta-
tions of DNA sequences. From low (1/100 or 1 mutation in 100 nt) to high
(R or 1 mutation each nucleotide) mutation rates, motifs mapped by cofac-
tors and mediated cofactors are sensibly reduced (500 sequences per ChIP
dataset; model 4; Online Methods: Models stability), which affects predic-
tive performances (AUROC; averages and standard deviations shown).

performances were significantly reduced at high mutation
rates (AUROC of 0.59; P-value = 0.003, Student’s t-test;
Online Methods: Models stability), although a number of
binding sites could be still identified due to degeneration of
consensus motifs (Figure 6b).

Use of the PAnDA approach

Given a pool of TFs and DNA sequences, PAnDA re-
trieves components of PPI networks from publicly available
databases (‘Materials and Methods’ section: Interaction net-
works) selecting proteins that have expression levels compat-
ible with the cell-line of interest (‘Materials and Methods’
section: Expression levels). Once the binding motifs (‘Mate-
rials and Methods’ section: Regulatory motifs) are mapped
onto the DNA sequences, three independent classifiers are
employed to predict the binding propensities of TF, their
cofactors and mediated-cofactors (Figure 7). As binding
motifs are collected from various sources, the mappability
score is used to select the set with highest information con-
tent (‘Materials and Methods’ section: Regulatory motifs).
In the web server implementation, the algorithm stops if
the signal in the submitted datasets is comparable with ran-
dom submissions (Specificity of PAnDA models). Otherwise,
PAnDA reports DNA sequences and the interacting PPI
networks for further analysis.

CONCLUSIONS

PAnDA is a powerful method to explore protein–DNA net-
works and can be used to design experiments targeting ge-
nomic regions such as promoters, enhancers as well as other
functional elements. The key ingredients of our approach
rely on intrinsic aspects of experimental measurements. In-
deed, due to the formaldehyde fixation step during immuno-
precipitation (8), binding regions reported in ENCODE
ChIP-seq data involve multiple protein interactions. Start-
ing from this observation, we found that PPI network infor-
mation substantially improves the ability to classify TFBS
(Figure 3; Online Methods: Interaction networks). Our re-
sults are in agreement with previous statistical analyses re-
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Figure 7. Using the PAnDA approach. Once DNA and TF sequences are submitted to the PAnDA web server, (a) PPI networks are selected from publicly
available databases using expression levels to retrieve components of PPI networks that are active in specific cell-lines; (b) Regulatory motifs of DNA-
binding proteins are mapped onto DNA sequences and reported in a table; (c) Three algorithms predict protein-DNA interactions exploiting first (TF),
second (TF and cofactors) and third (TF, cofactors and mediated cofactors) layers of PPI networks. If DNA motifs of input TFs are missing, an alternative
model (model 4) based on motifs of cofactors and mediated cofactors is employed. Each protein association is scored with a value for the propensity of
the interaction to occur (see also Online Tutorial).

porting that regulatory motifs of cofactors are significantly
enriched in proximity of transcription factors binding sites
(42). Moreover, our algorithm very well complements re-
cent catalogues of TF interactions (43), providing a tool to
predict combinatorial associations in large-scale studies. It
should be mentioned that our approach is an attempt to-
ward the development of a multi-body potential for molecu-
lar interactions, which could overcome limitations of binary
predictors (44). Implementation of new algorithms based
on combinatorial features will impact performances of ex-
isting methods such as for instance catRAPID for protein–
RNA interactions (45).

In conclusion, while binding site identification based on
nucleic acid motifs of individual proteins provides low-
accuracy predictions, integrative approaches such as the one
presented here will facilitate the discovery of complex func-
tionalities based on combinatorial associations of proteins,
leading to a better understanding of phenomena that gov-
ern genome evolution and stability (46). We envisage that
PAnDA will be extremely useful to investigate and manipu-
late regulatory networks in future engineering studies (47).

Further details about the assessment of PAnDA mod-
els are available in the Supplementary Data. PAnDA web-
service is freely available at http://service.tartaglialab.com/
new submission/panda.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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