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Abstract

Background: Comparison between multiple protein datasets requires the choice of an appropriate reference
system and a number of variables to describe their differences. Here we introduce an innovative approach to
discriminate multiple protein datasets (multiCM) and to measure enrichments in gene ontology terms (cleverGO)
using semantic similarities.

Results: We illustrate the powerfulness of our approach by investigating the links between RNA-binding ability and
other protein features, such as structural disorder and aggregation, in S. cerevisiae, C. elegans, M. musculus and H.
sapiens. Our results are in striking agreement with available experimental evidence and unravel features that are key
to understand the mechanisms regulating cellular homeostasis.

Conclusions: In an intuitive way, multiCM and cleverGO provide accurate classifications of physico-chemical
features and annotations of biological processes, molecular functions and cellular components, which is extremely
useful for the discovery and characterization of new trends in protein datasets. The multiCM and cleverGO can be
freely accessed on the Web at http://www.tartaglialab.com/cs_multi/submission and http://www.tartaglialab.com/
GO_analyser/universal. Each of the pages contains links to the corresponding documentation and tutorial.
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Background
There is a growing gap between amount of proteomic
data and availability of tools for their analysis [1]. While
several application programming interfaces are available
to analyse computational and experimental results [2], a
simple and intuitive interface is currently lacking or
missing. Our goal is to start bridging this gap by provid-
ing algorithms for analysis of protein sets and discovery
of mechanisms that regulate protein function and
interactions.
The first method presented here, the multiCleverMa-

chine (multiCM), is an extension of the cleverMachine
approach (CM [3]) to classify multiple protein datasets

using physico-chemical properties. The second algo-
rithm, the cleverGO, is inspired by the need to simplify
Gene Ontology (GO) annotation output. While GO sta-
tistics are important to characterize the functional role
of proteins, their interpretation is difficult without fur-
ther downstream processing [2, 4]. Current tools do not
provide a unique interface that combines GO term ana-
lysis with intuitive interpretation and visualization. For
instance, GOrilla [5] calculates GO terms enrichments,
but other tools are needed to summarize the results (e.g.
REVIGO [6]). cleverGO integrates multiple analyses in
one platform and facilitates GO processing through an
interactive analysis accessible via web browser.
We demonstrate the usefulness of our methods by

investigating the RNA-binding abilities of S. cerevisiae
chaperones and their substrates, the physico-chemical
determinants of protein insolubility in S. cerevisiae,
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M. musculus and H. sapiens, and the relationship
between aggregation and longevity in C. elegans. The pur-
pose of our analysis is twofold: to provide examples that
can be used as a reference in other studies and to shed
light on the link between nucleic-acid binding abilities and
protein features, such as structural disorder and aggrega-
tion, that are increasingly recognized as key factors for
cellular function and homeostasis [7–9].

Implementation
The multiCM accepts multiple protein sets in FASTA
format. Individual sets are classified as positive or
negative for binary comparison (the assignment is only
needed to create two groups and does not influence the
calculations). In each list, the CM screens physico-
chemical properties encoded by protein sequences [3]
to identify those that best discriminate positive and
negative classes (currently supported physico-chemical
properties are: nucleic acid binding propensity, mem-
brane propensity, alpha-helix propensity, aggregation
propensity, beta sheet propensity, burial propensity and
hydrophobicity, but custom properties can be included,
as explained in the online Tutorial). For a detailed de-
scription of CM performances, we refer to our previous
publication [3].

In each multiCM run, the information is compiled to-
gether from individual models into a high-level
overview:

� The user can glean what trend is detected in the
data using different physico-chemical features.
The indicators collate 10 predictors for each
selected feature and represent their consensus
with a colour, akin to a micro-array slide (Fig. 1a).
The colour of each array-spot represents differential
states of enrichment for the dataset pairs and allows
easy interpretation of increase, decrease or insufficient
signal.

The analysis is not restricted to the consensus infor-
mation only - a link to a full CM view is provided in the
main panel (with details on p-value, cross-validation per-
formances, ROC curves and other statistics). The detail
view contains ID number of the CM run providing the
ability to use it in creation of a cleverClassifier to study
new datasets [3], as well as a link to perform Gene
Ontology analysis using the second part of our toolkit,
the cleverGO.
The cleverGO webserver provides two ways to explore

data:

Fig. 1 RNA-binding abilities of S. cerevisiae chaperone substrates. a RNA-binding ability of yeast chaperones substrates is visualized in a microarray-like
table. Hsp90 and Hsp40 are predicted to have the largest number of nucleic-acid binding partners (Positive set: vertical axis; Negative set: horizontal
axis; Green: positive set is enriched with respect to negative set; Red: negative set is enriched with respect to positive set [3]; Yellow: non significant
enrichment; Grey: not calculable enrichment due strong overlap between the sets). The enrichment is associated with a p-value < 10−5 calculated with
Fisher’s exact test. b GO annotations are shown through an innovative interface that allows clustering through semantic similarity. The largest cluster
of Hsp90 interactors is related to the molecular function (MF) RNA/DNA binding (red cluster corresponding to a coverage of 372 out of 877 proteins).
Full analysis is available at http://www.tartaglialab.com/cs_multi/confirm/286/d67c93dd10/
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� The first view of the cleverGO tool is a classic
enrichment table. Enriched GO terms are showed
along with coverage, significance and additional
information such as the term depth taken from the
acyclic GO graph [4]. The enrichment employs
interactive filters - users can match text in the
description field, sort by significance or exclude terms
based on their term depth or precision [10]. Each GO
term is linked to AmiGO [11].

In the second cleverGO visualisation, a force-layout
is used to dynamically organize the graph depending on
the strength of the connections and separate analyses are
generated for biological process, molecular function and
cellular component ontologies (Fig. 1b). To illustrate rela-
tionships between GO terms and to perform functional
clustering, we use semantic similarity [12]. The user can
interact with the graph: hover over each node with the
cursor yields information about the node, clicking it acti-
vates an information panel about the cluster the node be-
longs to (Fig. 1b). For each of the clusters, cleverGO shows
a list of GO terms that can be individually interrogated, as
well as the description of the cluster content. We also pro-
vide cluster coverage, i.e. how many of the entries in the
user’s submission are annotated with GO terms found in
the cluster (the list of entries is also available for the user
to download). Each of the operations above is based on the
current state of the graph - if the signal strength threshold
is changed, the graph’s connectedness changes. If the user
applies the minimal term level or precision cut-off, nodes
from the graph are filtered. The same principle applies for
the p-value cut-off (Bonferroni test). Making the graph
behaviour dynamic significantly reduces the time needed
to perform analysis - the user does not need to re-run any
calculation to see the result of a parameter change.
Additional features:

� Upon activation of the detail view on the
multiCM output page, the user can access the
Boxplotter. The Boxplotter takes the input datasets
with best-performing features (passed automatically
from the detail view) and shows the distribution of
associated propensity scores. On top of the physico-
chemical scale information, the Boxplotter matches
protein IDs with protein abundance databases [13]
to provide information on the distribution of
expression values. In addition, the Boxplotter performs
discrimination analysis with the data, showing
p-values for the statistics and Receiver Operating
Characteristic (ROC) curves.

Results and discussion
To illustrate the performances of both multiCM and
cleverGO, we studied the RNA-binding abilities of S.

cerevisiae chaperone substrates [14], the physico-
chemical determinants of protein insolubility in in S.
cerevisiae, M. musculus and H. sapiens [15], and the
link between protein aggregation and longevity in C.
elegans [16].

RNA-binding abilities of S. cerevisiae chaperone substrates
Systematic analysis of physical TAP-tag based protein-
protein interactions revealed individual networks of
S. cerevisiae chaperones [14]. In agreement with experi-
mental evidence, the multiCM predicts that Hsp90
(Hsp82) [17] and Hsp40 (Cwc23) [18] are prone to asso-
ciate with RNA-binding proteins (RBPs; Fig. 1a; red dots
indicate enrichment over other chaperones). By contrast,
Hsp60 shows the lowest propensity to interact with
RBPs, which is consistent with its main role of guiding
hydrophobic proteins to fold into the native state [19]
(Fig. 1a; green dots indicate depletion over other chaper-
ones). Moreover, Hsp70 (Ssb1) binds directly with tran-
scripts and is predicted to have more RBP partners than
Hsp60 [20]. AAA+ (Hsp78) shows similar pattern as
Hsp70, in agreement with the fact that the two chaperones
work together [21]. As for other physico-chemical features,
multiCM reports that both Hsp40 and Hsp78 associate
with structurally disordered (and hydrophilic [22]) proteins,
which is in line with previous experimental studies on prion
propagation [23], while Hsp60, Hsp70 and Hsp90 are pre-
dicted to bind to hydrophobic proteins [3, 19]. To further
investigate Hsp90 features, we performed cleverGO analysis
of its substrates. Looking at the molecular function (Fig. 1b),
we observe an enrichment in GO terms related to RBPs
(e.g., class “RNA-binding” shows p-value < 10−5; Bonferroni
test), which very well complements our predictions of
physico-chemical features. Importantly, the nucleic-acid
cluster is the largest in terms of dataset coverage (>40% of
the substrates list; Fig. 1b).

Physico-chemical determinants of protein insolubility
A recent mass-spectrometry study investigated protein
precipitates formed upon centrifugation of S. cerevisiae,
M. musculus and H. sapiens cells [15]. Two major deter-
minants have been reported to promote insolubility:
structural disorder in H. sapiens and M. musculus, which
induces aberrant interactions promoting precipitation of
protein complexes [24], and aggregation propensity [25]
in S. cerevisiae cells, which is linked to the presence of
hydrophobic residues exposed on protein surfaces [22].
Using the multiCM approach to compare low-solubility
(LS) and high-solubility (HS) proteins, we observed that
H. sapiens and M. musculus have a larger fraction of
structurally disordered regions in the LS group, while
non-significant enrichments were found in yeast (Fig. 2a).
Differently from H. sapiens and M. musculus cells, S.
cerevisiae shows high intrinsic aggregation propensity
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(i.e., calculated in the unfolded state) for LS proteins
(Fig. 2b), in agreement with analyses carried out with
TANGO [26] and AGGRESCAN [27] performed in the
original study [15]. Yet, the HS group has higher bur-
ial in H. sapiens and M. musculus (Additional file 1:
Figure S1A), which suggests that aggregation-prone
amino acids are less abundant on surfaces when proteins
are natively folded [28, 29]. In addition to discriminating
LS and HS groups in S. cerevisiae (p-value = 10−11; Mann–
Whitney–Wilcoxon test; Area under the ROC curve =
0.72; Fig. 2b) the aggregation propensity is also anti-
proportional to protein abundance (p-value = 10−9;
Mann–Whitney–Wilcoxon test; Area under the ROC
curve = 0.70; Fig. 2c), which is in line with previous

observations suggesting an evolutionary pressure to re-
duce the expression of amyloidogenic proteins [30–32]. In
agreement with GO analysis performed in the experi-
mental study [15], we found strong enrichment of RBPs
in the LS proteins of human (e.g., class “RNA-binding”
has p-value < 10−8; Bonferroni test), mouse (“RNA-binding”
with p-value < 10−8) and yeast (“RNA-binding” with
p-value < 9*10−8) cells, supporting the hypothesis that
RNA molecules provide the scaffold for protein inter-
actions [33] and (Fig. 2d, e and f ).

Protein aggregation and longevity
It has been observed that inhibition of the insulin
growth 1 signaling pathways leads to a dramatic lifespan

Fig. 2 Physico-chemical determinants of protein insolubility. Comparing low-solubility (LS) and high-solubility (HS) proteins in three eukaryotic cells
[15], we found that a LS proteins are structurally disordered in human and mouse (red dots indicate enrichments in LS proteins).b The Boxplotter
algorithm indicates that there is a significant difference between aggregation-propensities of HS and LS groups in yeast (p-value = 10−11;
Mann–Whitney–Wilcoxon test; area under the ROC curve = 0.72), which is c inversely related to protein abundance (p-value = 10−9; Mann–Whitney–Wilcoxon
test; area under the ROC curve = 0.70), in agreement with previous evolutionary observations [30–32]. In all organisms, we find d more
nucleic acid binding in LS fractions. e, f LS proteins are enriched in nucleic-acid binding ability (Additional file 1: Figure S1), as shown
with cleverGO analysis on human and yeast. The links to multiCM, Boxplotter and cleverGO analyses are available at http://www.tartaglialab.com/
cs_multi/confirm/737/6065feed14/
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extension of C. elegans strains carrying mutation in the
daf-2 receptor and that transcription factor hsf-1 is
essential for longevity [16]. Mass-spectrometry analysis
of long-lived daf-2 and short-lived hsf-1 mutant strains
revealed two major types of deposits that accumulate
during aging: hsf-1 mutant proteins have high aggrega-
tion propensities, while daf-2 mutant proteins show de-
creased structural content [16]. Thus, decrease in
longevity can be associated with accumulation of
aggregation-prone proteins, whereas lower hydrophobi-
city is linked to different type of deposits and signifi-
cantly reduced toxicity. Using the multiCM approach to
compare the insoluble fraction of hsf-1 mutant strain
with wild type worm (WT), we found that proteins
showing high enrichment in mass-spectrometry analysis
(class HSF-1 4/4) are more aggregation-prone than those
with low enrichment (class HSF-1 1/4) [Fig. 3a]. By con-
trast, proteins enriched in daf-2 mutant worms (DAF-2
4/4) have lower aggregation propensities than those
showing low enrichment (DAF-2 1/4). In the daf-2 mu-
tant strain (DAF-2 3/4 and DAF-2 4/4) enrichments are
associated with decrease in beta-sheet content (Add-
itional file 1: Figure S2A), while in hsf-1 mutant worms
(HSF-1 3/4 and HSF-1 4/4) we observe depletion of
structural disorder (Additional file 1: Figure S2B). Pro-
teins present in the hsf-1 strain (i.e., listed in HSF-1

4/4 and not included in DAF-2 4/4) are involved in
several metabolic processes (e.g., class “oxidative
stress response” with p-value < 6*10−4; Bonferroni
test), oxidative stress response (e.g., class “metabolic
process” shows p-value < 10−7) and mitochondrial
function (e.g., class “mitochondrion” with p-value <
10−7), as reported in the original study (Fig. 3c) [16].
In addition, and in line with the work on S. cerevisiae,
M. musculus and H. sapiens proteomes [15], we found an
enrichment of RBPs (e.g., class “RNA-binding” shows p-
value = 7*10−3), which reinforces the link between protein
deposition and nucleic acid binding [34].

Conclusions
In this work, we introduced two innovative approaches
to compare multiple protein datasets using physico-
chemical properties and GO annotations: the multiCM
allows feature classification and the cleverGO provides
clustering through semantic relationships. We illustrated
the performances of both multiCM and cleverGO using ex-
amples related to RNA-binding abilities of S. cerevisiae
chaperone substrates [14], physico-chemical determinants
of protein insolubility in S. cerevisiae, M. musculus and
H. sapiens [15] and the link between aggregation and
life-span in C. elegans [16]. In all cases, the results are in
agreement with available evidence on protein functions and

Fig. 3 Protein aggregation and longevity. We used multiCM to analyze insoluble fractions of C. elegans proteins [16]. a Analysis of mass-spectrometry
data indicates that in the hsf-1 strain (short-lived) highly enriched proteins (class HSF 4/4) are more aggregation prone than those less enriched (class
HSF1 1/4). b In the daf-2 strain (long-lived), highly enriched proteins (DAF2 4/4) show lower aggregation propensities than the ones poorly enriched
(DAF2 1/4). In these calculations, the insoluble fraction of the strains is divided into 4 equal sets containing proteins with fold enrichments > 1 with re-
spect to wild type worm and ranked from low (1/4) to high (4/4) [green dots indicate row vs column enrichments]. c Using the cleverGO algorithm,
we analyzed proteins present in the hsf-1 strain (i.e., reported in HSF-1 4/4 and not in DAF-2 4/4) and found enrichments in metabolic pathways,
oxidative stress response and mitochondrial function. Links to the analyses are at http://www.tartaglialab.com/cs_multi/confirm/757/9e1710f579/
and http://www.tartaglialab.com/cs_multi/confirm/758/95acfc44da/
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interactions, providing a clear indication on the flexibility
and broad applicability of our algorithms.
As shown in the examples, we are particularly inter-

ested in understanding the relationship between
nucleic-acid binding ability and structural disorder and
aggregation. Indeed, previous studies indicate that RNA
secondary structures [35], especially when enriched in
GC content [36], contribute to spatial rearrangement of
disordered regions, promoting the formation of protein-
RNA complexes. In agreement with these observations,
it has been reported that intrinsically disordered
proteins interact with RNA [8, 37], which influences
protein aggregation [38] and, in turn, toxicity [39]. The
involvement of nucleic acid molecules in protein aggre-
gation [40] is compatible with the findings discussed in
our examples and provides an intriguing working hy-
pothesis [7, 41] to study neurodegenerative events [42]
that are characterized by aggregation [43] and structural
disorder [44]. As a matter of fact, previous work indi-
cates that presence of polyanions lead to reduction of
protein stability [45] and nucleic acids have a strong
tendency to accumulate in neurofibrillary tangles and
senile plaques [46]. Recent evidence also shows that
aggregation-related mutations in the RBPs Tar DNA-
binding protein 43 TDP-43 and Translocated in liposar-
coma protein FUS are associated with the formation of
RNA granules [47, 48] that are phase separated, non-
membrane-bound ribonucleoprotein aggregates [49, 50].
In conclusion, theoretical approaches for prediction of

protein features, such as those integrated in the multiCM
for prediction of structural disorder, aggregation and
nucleic-acid binding ability [51–53], will be useful to pro-
vide insights into functional networks. We hope that our
tools will be useful for the discovery of trends in protein
datasets, complementing experimental [54, 55] and
theoretical analyses [31, 56–58].

Availability and requirements
The multiCM and cleverGO are available at http://
www.tartaglialab.com/cs_multi/submission and http://
www.tartaglialab.com/GO_analyser/universal.
Tutorials can be accessed at http://www.tartaglialab.-

com/cs_multi/tutorial and http://www.tartaglialab.com/
GO_analyser/tutorial. Documentation files are deposited
at http://service.tartaglialab.com/static_files/algorithms/
clever_machine/documentation.html.

Additional file

Additional file 1: Figure S1. Physico-chemical determinants of protein
insolubility. High-solubility (HS) proteins show A) higher burial in human
and mouse, in agreement with the observations reported in the original
study. Figure S2. Physico-chemical of C. elegans mutant strains. A) In the
hsf-1 strain, highly enriched proteins (HSF 4/4) are less structurally

disordered than those poorly enriched (HSF1 1/4). B) In the daf-2 strain
(long-lived), highly enriched proteins (DAF2 4/4) show lower beta-sheet
propensities than those poorly enriched (DAF2 1/4), in agreement with
observations reported in the original experimental study. (DOCX 412 kb)
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